迪克猪的博客
Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Back to homepage

12|套路篇--CPU性能优化的几个思路

性能优化方法论

三个问题:

  • 首先,既然要做性能优化,那要怎么判断它是不是有效呢?特别是优化后,到底能提升多少性能呢?
  • 第二,性能问题通常不是独立的,如果有多个性能问题同时发生,你应该先优化哪一个呢?
  • 第三,提升性能的方法并不是唯一的,当有多种方法可以选择时,你会选用哪一种呢?是不是总选那个最大程度提升性能的方法就行了呢?

性能评估可能有多重指标,性能问题可能会多个同时发生,而且,优化某一个指标的性能,可能又导致其他指标性能的下降。

怎么评估性能优化的效果

性能评估“三步走”:

  • 确定性能的量化指标。
  • 测试优化前的性能指标。
  • 测试优化后的性能指标。

不要局限单一维度指标,至少要从应用程序和系统资源两个维度着手,分别选择不同的指标。

例:web应用程序:

  • 应用程序的维度 – 吞吐量与请求延迟
  • 系统资源的维度 – cpu使用率

为什么选择这两个维度:

  • 好的应用程序是性能优化的最终目的和结果,系统优化总是为应用程序服务的。所以,必须要使用应用程序的指标,来评估性能优化的整体效果。
  • 系统资源的使用情况是影响应用程序性能的根源。所以,需要用系统资源的指标,来观察和分析瓶颈的来源。

工具ab、vmstat、pidstat使用

性能测试注意事项:

  • 第一,要避免性能测试工具干扰应用程序的性能。通常,对 Web 应用来说,性能测试工具跟目标应用程序要在不同的机器上运行。
  • 第二,避免外部环境的变化影响性能指标的评估。这要求优化前、后的应用程序,都运行在相同配置的机器上,并且它们的外部依赖也要完全一致。

多个性能问题同时存在,要怎么选择?

性能问题不是独立存在的

并不是所有的性能问题都值得优化

例子:

  • 第一,如果发现是系统资源达到了瓶颈,比如CPU使用率达到了100%,那么首先优化的一定是系统资源使用问题。完成系统资源瓶颈的优化后,才要考虑其他问题。
  • 第二,针对不同类型的指标,首先去优化那些由瓶颈导致的,性能指标变化幅度最大的问题。比如产生瓶颈后,用户CPU使用率升高了10%,而系统CPU使用率却升高了50%,这个时候就应该首先优化系统CPU的使用。

有多种优化方法时,要如何选择?

一般情况下,我们当然想选能最大提升性能的方法,这其实也是性能优化的目标。

性能优化并非没有成本。(性能优化通常会带来复杂度的提升,降低程序的可维护性,还可能在优化一个指标时,引发其他指标的异常。也就是说,很可能你优化了一个指标,另一个指标的性能却变差了。)

cpu优化

应用程序优化

  • 编译器优化:很多编译器都会提供优化选项,适当开启它们,在编译阶段你就可以获得编译器的帮助,来提升性能。比如, gcc 就提供了优化选项 -O2,开启后会自动对应用程序的代码进行优化。
  • 算法优化:使用复杂度更低的算法,可以显著加快处理速度。比如,在数据比较大的情况下,可以用 O(nlogn) 的排序算法(如快排、归并排序等),代替 O(n^2) 的排序算法(如冒泡、插入排序等)。
  • 异步处理:使用异步处理,可以避免程序因为等待某个资源而一直阻塞,从而提升程序的并发处理能力。比如,把轮询替换为事件通知,就可以避免轮询耗费 CPU 的问题。
  • 多线程代替多进程:前面讲过,相对于进程的上下文切换,线程的上下文切换并不切换进程地址空间,因此可以降低上下文切换的成本。
  • 善用缓存:经常访问的数据或者计算过程中的步骤,可以放到内存中缓存起来,这样在下次用时就能直接从内存中获取,加快程序的处理速度。

系统优化

  • CPU 绑定:把进程绑定到一个或者多个 CPU 上,可以提高 CPU 缓存的命中率,减少跨 CPU 调度带来的上下文切换问题。
  • CPU 独占:跟 CPU 绑定类似,进一步将 CPU 分组,并通过 CPU 亲和性机制为其分配进程。这样,这些 CPU 就由指定的进程独占,换句话说,不允许其他进程再来使用这些 CPU。
  • 优先级调整:使用 nice 调整进程的优先级,正值调低优先级,负值调高优先级。优先级的数值含义前面我们提到过,忘了的话及时复习一下。在这里,适当降低非核心应用的优先级,增高核心应用的优先级,可以确保核心应用得到优先处理。
  • NUMA(Non-Uniform Memory Access)优化:支持 NUMA 的处理器会被划分为多个 node,每个 node 都有自己的本地内存空间。NUMA 优化,其实就是让 CPU 尽可能只访问本地内存。
  • 中断负载均衡:无论是软中断还是硬中断,它们的中断处理程序都可能会耗费大量的 CPU。开启 irqbalance 服务或者配置 smp_affinity,就可以把中断处理过程自动负载均衡到多个 CPU 上。

避免过早优化

性能优化最好是逐步完善,动态进行,不追求一步到位,而要首先保证能满足当前的性能要求。当发现性能不满足要求或者出现性能瓶颈时,再根据性能评估的结果,选择最重要的性能问题进行优化。